On the other side of the bialgebra of chord diagrams
نویسنده
چکیده
In the paper we describe complexes whose homologies are naturally isomorphic to the first term of the Vassiliev spectral sequence computing (co)homology of the spaces of long knots in R, d ≥ 3. The first term of the Vassiliev spectral sequence is concentrated in some angle of the second quadrant. In homological case the lower line is the bialgebra of chord diagrams (or its superanalog if d is even). We prove that the groups of the upper line are all trivial. In the same bigradings we compute the homology groups of the complex spanned only by strata of immersions in the discriminant (maps having only self-intersections). We interprete the obtained groups as subgroups of the (co)homology groups of the double loop space of a (d − 1)-dimensional sphere. In homological case the last complex is the normalized Hochschild complex of the Poisson or Gerstenhaber (depending on parity of d) algebras operad. The upper line bigradings are spanned by the operad of Lie algebras. To describe the cycles in these bigradings we introduce new homological operations on Hochschild complexes. We conjecture that these operations are related to Dyer-Lashof homology operations defined for double loop spaces.
منابع مشابه
Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random
The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...
متن کاملWhat is one-term relation for higher homology of long knots
Vassiliev’s spectral sequence for long knots is discussed. Briefly speaking we study what happens if the strata of non-immersions are ignored. Various algebraic structures on the spectral sequence are introduced. General theorems about these structures imply, for example, that the bialgebra of chord diagrams is polynomial for any field of coefficients.
متن کاملChord diagram invariants of tangles and graphs
The notion of a chord diagram emerged from Vassiliev's work Vas90], Vas92] (see also Gusarov Gus91], Gus94] and Bar-Natan BN91], BN95]). Slightly later, Kontsevich Kon93] deened an invariant of classical knots taking values in the algebra generated by formal linear combinations of chord diagrams modulo the four-term relation. This knot invariant establishes an isomorphism of a projective limit ...
متن کاملOn the homology of the spaces of long knots
Keywords: discriminant of the space of knots, bialgebra of chord diagrams, Hochschild complex, operads of Poisson – Gerstenhaber – Batalin-Vilkovisky algebras. This paper is a more detailed version of [T1], where the first term of the Vassiliev spectral sequence (computing the homology of the space of long knots in R d , d ≥ 3) was described in terms of the Hochschild homology of the Poisson al...
متن کاملAnalytic Combinatorics of Chord Diagrams Analytic Combinatorics of Chord Diagrams Combinatoire Analytique Des Diagrammes De Cordes Analytic Combinatorics of Chord Diagrams
In this paper we study the enumeration of diagrams of n chords joining 2n points on a circle in disjoint pairs. We establish limit laws for the following three parameters: number of components, size of the largest component, and number of crossings. We also nd exact formulas for the moments of the distribution of number of components and number of crossings. Key-words: Analytic combinatorics, c...
متن کامل